An avoidance principle and Margulis functions for expanding translates of unipotent orbits
Juno Seong (UC San Diego)
06-Oct-2022, 16:15-17:30 (3 years ago)
Abstract: Avoidance principles — quantifying how much time trajectories avoid certain subsets of the ambient space — have been fruitful in the study of dynamical systems. We prove an avoidance principle for expanding translates of unipotent orbits for some semisimple homogeneous spaces. In addition, we prove a quantitative isolation result of closed orbits and give an upper bound on the number of closed orbits of bounded volume. The proof of our results relies on the construction of a Margulis function and the theory of finite dimensional representations of semisimple Lie groups. This is joint work with Anthony Sanchez.
dynamical systemsnumber theory
Audience: general audience
New England Dynamics and Number Theory Seminar
| Organizers: | Dmitry Kleinbock, Han Li*, Lam Pham, Felipe Ramirez |
| *contact for this listing |
Export talk to
