Mean curvature flow with generic initial data

Felix Schulze (University of Warwick)

17-Mar-2021, 12:15-13:15 (5 years ago)

Abstract: A well-known conjecture of Huisken states that a generic mean curvature flow has only spherical and cylindrical singularities. As a first step in this direction Colding-Minicozzi have shown in fundamental work that spheres and cylinders are the only linearly stable singularity models. As a second step toward Huisken's conjecture we show that mean curvature flow of generic initial closed surfaces in $\mathbb R^3$ avoids asymptotically conical and non-spherical compact singularities. We also show that mean curvature flow of generic closed low-entropy hypersurfaces in $\mathbb R^4$ is smooth until it disappears in a round point. The main technical ingredient is a long-time existence and uniqueness result for ancient mean curvature flows that lie on one side of asymptotically conical or compact self-similarly shrinking solutions. This is joint work with Otis Chodosh, Kyeongsu Choi and Christos Mantoulidis.

analysis of PDEsdifferential geometry

Audience: researchers in the topic

( paper )


NCTS international Geometric Measure Theory seminar

Series comments: We envisage an event built around virtual presentations on progress in geometric measure theory by external speakers. Every researcher is free to register as a participant and thus gain access to a virtual facility which is complete with lobby, lecture hall, and areas with boards for discussion. Thus, it shall recreate the exchange possibilities found at international conferences.

Focus: regularity and singularity theories for submanifolds of Riemannian manifolds and some of its applications.

Frequency: one presentation every other month.

Registration: required for new participants, go to the seminar website (allow at least one working day for processing).

Virtual venue: HyHyve space NCTS iGMT seminar (only for registered participants, opened one hour before the events).

You might want to consult the description of the premises and instructions.

Former organiser: Guido De Philippis (till March 2022).

Organizers: Ulrich Menne*, Yoshihiro Tonegawa, Neshan Wickramasekera
*contact for this listing

Export talk to