Möbius inversion in hömotopy theory
Nir Gadish (MIT)
Abstract: Möbius inversion is classically a procedure in number theory that inverts summation of functions over the divisors of an integer. A similar construction is possible for every locally finite poset, and is governed by a so called Möbius function encoding the combinatorics. In 1936 Hall observed that the values of the Möbius function are Euler characteristics of intervals in the poset, suggesting a homotopy theoretic context for the inversion. In this talk we will discuss a functorial 'space-level' realization of Möbius inversion for diagrams taking values in a pointed cocomplete infinity-category. The role of the Möbius function will be played by hömotopy types whose reduced Euler characteristics are the classical values, and inversion will hold up to extensions (think inclusion-exclusion but with the alternating signs replaced by even/odd spheres).
This provides a uniform perspective to many constructions in topology and algebra. Notable examples that I hope to mention include handle decompositions, Koszul resolutions, and filtrations of configuration spaces.
algebraic topology
Audience: researchers in the topic
Series comments: We meet at varying times on Monday. Click here to join the zoom meeting . The Zoom meeting room number is 132-540-375.
The mailing list for this seminar is the MIT topology google group. Email Mike Hopkins if you want to join the list.
| Organizers: | Jeremy Hahn*, Ishan Levy*, André Lee Dixon*, Haynes Miller* |
| *contact for this listing |
