Equivariant Morava K-Theories?

Agnès Beaudry (University of Colorado Boulder)

16-Nov-2020, 21:30-22:30 (5 years ago)

Abstract: At height $h=2^{n-1}m$, the Morava stabilizer group contains a cyclic group $G$ of order $2^n$. In this talk, I will present equivariant spectra that refine the classical height $h$ Morava $K$-theories. These are obtained from $G$-equivariant models of Lubin-Tate spectra which were constructed in recent joint work with Hill-Shi-Zeng. I will present some preliminary results and conjectures about their slice filtration and equivariant homotopy groups and discuss how exotic transchromatic extensions lead to interesting differentials.

This is joint work with Hill-Shi-Zeng.

algebraic topology

Audience: researchers in the topic


MIT topology seminar

Series comments: We meet at varying times on Monday. Click here to join the zoom meeting . The Zoom meeting room number is 132-540-375.

The mailing list for this seminar is the MIT topology google group. Email Mike Hopkins if you want to join the list.

Organizers: Jeremy Hahn*, Ishan Levy*, André Lee Dixon*, Haynes Miller*
*contact for this listing

Export talk to