Manin's conjecture for spherical Fano threefolds

Ulrich Derenthal (Leibniz Universität Hannover)

27-Feb-2024, 21:00-22:00 (22 months ago)

Abstract: When an algebraic variety over the rational numbers contains infinitely many rational points, we may study their distribution. In particular, for Fano varieties, the asymptotic behavior of the number of rational points of bounded height is predicted by Manin's conjecture.

In this talk, we discuss a proof of Manin's conjecture for smooth spherical Fano threefolds. In one case, in order to obtain the expected asymptotic formula, it is necessary to exclude a thin subset with exceptionally many rational points from the count. This is joint work with V. Blomer, J. Brüdern and G. Gagliardi.

algebraic geometrynumber theory

Audience: researchers in the topic


MIT number theory seminar

Series comments: To receive announcements by email, add yourself to the nt mailing list.

Past semesters

Organizers: Edgar Costa*, Bjorn Poonen*, David Roe*, Andrew Sutherland*, Robin Zhang*, Wei Zhang*, Eran Assaf*, Thomas Rüd
*contact for this listing

Export talk to