Towards an Eichler-Shimura decomposition for ordinary p-adic Siegel modular forms
Ana Caraiani (Imperial College London)
Abstract: There are two different ways to construct families of ordinary p-adic Siegel modular forms. One is by p-adically interpolating classes in Betti cohomology, first introduced by Hida and then given a more representation-theoretic interpretation by Emerton. The other is by p-adically interpolating classes in coherent cohomology, once again pioneered by Hida and generalised in recent years by Boxer and Pilloni. I will explain these two constructions and then discuss joint work in progress with James Newton and Juan Esteban RodrÃguez Camargo that aims to compare them.
number theory
Audience: researchers in the topic
Series comments: For reminders, join the (very low traffic) mailing list at mailman.ic.ac.uk/mailman/listinfo/london-number-theory-seminar
For a record of talks predating this website see: wwwf.imperial.ac.uk/~buzzard/LNTS/numbtheo_past.html
| Organizers: | Alexei Skorobogatov*, Margherita Pagano* |
| *contact for this listing |
