Period polynomials of Bianchi modular forms

Lewis Combes (University of Sheffield)

15-May-2024, 15:00-16:00 (19 months ago)

Abstract: Bianchi modular forms (i.e. automorphic forms over imaginary quadratic fields) share many similarities with their classical cousins. One such similarity is the period polynomial, studied for classical modular forms by Manin, Kohnen and Zagier, as well as many others. In this talk we define period polynomials of Bianchi modular forms, show how to compute them in practice, and use them to (conjecturally) extract information about congruences between Bianchi forms of various types (base-change and genuine forms; cusp forms and Eisenstein series). All of this is done through an example space of Bianchi forms, from which we find new congruences modulo 43 and 173. Time permitting, we will also describe some open problems relating to these methods, and how these relate to the classical picture. No prior knowledge of Bianchi modular forms is assumed.

number theory

Audience: researchers in the topic


London number theory seminar

Series comments: For reminders, join the (very low traffic) mailing list at mailman.ic.ac.uk/mailman/listinfo/london-number-theory-seminar

For a record of talks predating this website see: wwwf.imperial.ac.uk/~buzzard/LNTS/numbtheo_past.html

Organizers: Alexei Skorobogatov*, Margherita Pagano*
*contact for this listing

Export talk to