Reduction modulo p of the Noether problem
Emiliano Ambrosi (Strasbourg)
Abstract: Let k be an algebraically closed field of characteristic p≥0 and V a faithful k-rational representation of an l-group G. The Noether's problem asks whether V/G is (stably) birational to a point. If l is equal to p, then Kuniyoshi proved that this is true, while, if l is different from p, Saltman constructed l-groups for which V/G is not stably rational. Hence, the geometry of V/G depends heavily on the characteristic of the field. We show that for all the groups G constructed by Saltman, one cannot interpolate between the Noether problem in characteristic 0 and p. More precisely, we show that it does not exist a complete valuation ring R of mixed characteristic (0,p) and a smooth proper R-scheme X---->Spec(R) whose special fiber and generic fiber are both stably birational to V/G. The proof combines the integral p-adic Hodge theoretic results of Bhatt-Morrow-Scholze, with the study of the Cartier operator on differential forms in positive characteristic. This is a joint work with Domenico Valloni.
number theory
Audience: researchers in the topic
Series comments: For reminders, join the (very low traffic) mailing list at mailman.ic.ac.uk/mailman/listinfo/london-number-theory-seminar
For a record of talks predating this website see: wwwf.imperial.ac.uk/~buzzard/LNTS/numbtheo_past.html
| Organizers: | Alexei Skorobogatov*, Margherita Pagano* |
| *contact for this listing |
