Exact g-functions

Joao Caetano (YITP)

25-Jun-2020, 14:00-16:00 (4 years ago)

Abstract: ​The g-function is a measure of degrees of freedom associated to a boundary of two-dimensional quantum field theories. In integrable theories, it can be computed exactly in a form of the Fredholm determinant, but it is often hard to evaluate numerically. In this paper, we derive functional equations---or equivalently integral equations of the thermodynamic Bethe ansatz (TBA) type---which directly compute the g-function in the simplest integrable theory; the sinh-Gordon theory at the self-dual point. The derivation is based on the classic result by Tracy and Widom on the relation between Fredholm determinants and TBA, which was used also in the context of topological string. As a side result, we present multiple integrals of Q-functions which we conjecture to describe a universal part of the g-function, and discuss its implication to integrable spin chains.

HEP - theorymathematical physicsexactly solvable and integrable systems

Audience: researchers in the topic


London Integrability Journal Club

Series comments: To register for this online seminar series please fill the form:

docs.google.com/forms/d/e/1FAIpQLSfIPJS4W5aPu5Cqqy8LoeO0bQkxBMz_5DNhb04vsSWsNz6VAQ/viewform

Announcements also on

integrability-london.weebly.com/

Organizers: Andrea Cavaglià, Nikolay Gromov, Evgeny Sobko*, Bogdan Stefanski
*contact for this listing

Export talk to