Los grafos expansores y el problema de paridad
Harald Helfgott (Universität Göttingen y CNRS)
Abstract: La noción de grafo expansor puede definirse de varias maneras equivalentes: en términos de las fronteras de conjuntos de vértices, o de valores propios del Laplaciano, o de caminatas aleatorias... Los grafos expansores se han convertido en un objeto central de estudio en las matemáticas discretas; aparte de sus variadas aplicaciones en el estudio de algoritmos, aparecen en la teoría de grupos, la combinatoria y también en la teoría de números.
Aparte de dar una introducción a los grafos expansores, hablaré de un resultado reciente mío (todavía por aparecer!) conjunto con M. Radziwiłł. Probamos que unos grafos que codifican cuáles primos en un rango dividen a cada entero son grafos expansores, en un sentido por cierto fuerte. En tanto que corolarios (y usando también un resultado de Matomäki-Radziwiłł-Tao), obtenemos que
$$\frac{1}{\log x} \sum_{n\leq x} \frac{\lambda(n) \lambda(n+1)}{n} = O\left(\frac{1}{\sqrt{\log \log x}}\right),$$
lo cual mejora el resultado de Tao sobre la conjectura de Chowla logarítmica en grado 2. Obtenemos también una mejora sobre el trabajo de Tao-Teräväinen sobre la conjectura de Chowla a casi toda escala.
Spanishnumber theory
Audience: researchers in the topic
Coloquio Latinoamericano de Teoría de Números
Series comments: El objetivo de este coloquio es fomentar el desarrollo de la teoría de números en latinoamérica, y sus colaboraciones, por medio de exposiciones de trabajos de investigación a cargo de personas pertenecientes a distintos centros de investigación, con intereses comunes en teoría de números y áreas afines.
La presentación estará seguida por un "café virtual" al que están invitados todos los participantes.
| Organizers: | Ariel Pacetti*, Gonzalo Tornaría*, Harald Helfgott |
| *contact for this listing |
