Cornering the universal shape of fluctuations and entanglement

William Witczak-Krempa (University of Montreal)

22-Mar-2021, 18:30-19:30 (3 years ago)

Abstract: Understanding the fluctuations of observables is one of the main goals in physics. We investigate such fluctuations when a subregion of the full system can be observed, focusing on geometries with corners. We report that the dependence on the opening angle is super-universal: up to a numerical prefactor, this function does not depend on anything, provided the system under study is uniform, isotropic, and correlations do not decay too slowly. The prefactor contains important physical information: we show in particular that it gives access to the long-wavelength limit of the structure factor. We illustrate our findings with several examples: classical fluids, fractional quantum Hall (FQH) states, scale invariant quantum critical theories, and metals. Finally, we discuss connections with the entanglement entropy, including new results for Laughlin FQH states. Ref: arXiv:2102.06223

other condensed mattersoft condensed matterstatistical mechanicsstrongly correlated electronssuperconductivitygeneral relativity and quantum cosmologyHEP - theorymathematical physicschaotic dynamicsfluid dynamicsquantum physics

Audience: researchers in the topic


Kadanoff seminars

Organizers: Luca Delacretaz*, Nima Afkhami-Jeddi
*contact for this listing

Export talk to