Two dimensional gravity waves at low regularity I: Energy estimates

Mihaela Ifrim (University of Wisconsin-Madison)

27-Aug-2020, 14:00-14:50 (5 years ago)

Abstract: This article represents the first installment of a series of papers concerned with low regularity solutions for the water wave equations in two space dimensions. Our focus here is on sharp cubic energy estimates. Precisely, we introduce and develop the techniques to prove a new class of energy estimates, which we call \emph{balanced cubic estimates}. This yields a key improvement over the earlier cubic estimates of Hunter-Ifrim-Tataru [12], while preserving their scale invariant character and their position-velocity potential holomorphic coordinate formulation. Even without using any Strichartz estimates, these results allow us to significantly lower the Sobolev regularity threshold for local well-posedness, drastically improving earlier results obtained by Alazard-Burq-Zuily [3, 4], Hunter-Ifrim-Tataru [12] and Ai [2]. This is joint work with Albert Ai and Daniel Tataru.

analysis of PDEs

Audience: researchers in the topic

Comments: https://nguyenquochung1241.wixsite.com/qhung/post/pde-seminar-via-zoom


PDE seminar via Zoom

Organizer: Quoc-Hung Nguyen*
*contact for this listing

Export talk to