From Speech AI to Finance AI and Back
Li Deng (Citadel)
Abstract: A brief review will be provided first on how deep learning has disrupted speech recognition and language processing industries since 2009. Then connections will be drawn between the techniques (deep learning or otherwise) for modeling speech and language and those for financial markets. Similarities and differences of these two fields will be explored. In particular, three unique technical challenges to financial investment are addressed: extremely low signal-to-noise ratio, extremely strong nonstationarity (with adversarial nature), and heterogeneous big data. Finally, how the potential solutions to these challenges can come back to benefit and further advance speech recognition and language processing technology will be discussed.
bioinformaticsgame theoryinformation theorymachine learningneural and evolutionary computingclassical analysis and ODEsoptimization and controlstatistics theory
Audience: researchers in the topic
IAS Seminar Series on Theoretical Machine Learning
Series comments: Description: Seminar series focusing on machine learning. Open to all.
Register in advance at forms.gle/KRz8hexzxa5P4USr7 to receive Zoom link and password. Recordings of past seminars can be found at www.ias.edu/video-tags/seminar-theoretical-machine-learning
| Organizers: | Ke Li*, Sanjeev Arora |
| *contact for this listing |
