Ground State Properties in the Quasi-Classical Regime

Michele Correggi (Politecnico di Milano)

05-Jul-2022, 14:00-15:00 (22 months ago)

Abstract: We study the ground state energy and ground states of systems coupling non-relativistic quantum particles and force-carrying Bose fields, such as radiation, in the quasi-classical approximation. The latter is very useful whenever the force-carrying field has a very large number of excitations, and thus behaves in a semiclassical way, while the non-relativistic particles, on the other hand, retain their microscopic features. We prove that the ground state energy of the fully microscopic model converges to the one of a nonlinear quasi classical functional depending on both the particles' wave function and the classical configuration of the field. Equivalently, this energy can be interpreted as the lowest energy of a Pekar-like functional with an effective nonlinear interaction for the particles only. If the particles are confined, the ground state of the microscopic system converges as well, to a probability measure concentrated on the set of minimizers of the quasi classical energy.

mathematical physics

Audience: researchers in the discipline


One world IAMP mathematical physics seminar

Series comments: In order to receive announcements, please send an email to IAMPseminars@gmail.com with “subscribe” in the subject line.

Organizers: Margherita Disertori*, Wojciech Dybalski*, Ian Jauslin, Hal Tasaki*
*contact for this listing

Export talk to