Multipartitioning topological phases and quantum entangle
Shinsei Ryu (Princeton University)
Abstract: We discuss multipartitions of the gapped ground states of (2+1)-dimensional topological liquids into three (or more) spatial regions that are adjacent to each other and meet at points. By considering the reduced density matrix obtained by tracing over a subset of the regions, we compute various correlation measures, such as entanglement negativity, reflected entropy, and associated spectra. We utilize the bulk-boundary correspondence to achieve such multipartitions and construct the reduced density matrix near the entangling boundaries. We find the fingerprints of topological liquid in these quantities, such as (universal pieces in) the scaling of the entanglement negativity, and a non-trivial distribution of the spectrum of the partially transposed density matrix. For reflected entropy, we test the recent claim that states the difference between reflected entropy and mutual information is given, once short range correlations are properly removed, by (|c|/3) ln 2 where c is the chiral central charge of the topological liquid.
HEP - theorymathematical physicsquantum physics
Audience: researchers in the topic
( video )
Series comments: The recorded talks will be available on YouTube here: www.youtube.com/playlist?list=PLxU3vHZccQj64m9zsQR74D5WP1z1g4t1J
| Organizers: | Nima Lashkari*, Shoy Ouseph*, Kwing Lam Leung |
| *contact for this listing |
