On the number of periodic points of symplectomorphisms on surfaces
Marta Batoreo (Universidade Federal do Espírito Santo)
Abstract: In this talk I will survey some results on the existence of periodic points of symplectomorphisms defined on closed orientable surfaces of positive genus g. Namely, I will describe some symplectic flows on such surfaces possessing finitely many periodic points and describe a non-Hamiltonian variant of the Hofer-Zehnder conjecture for symplectomorphisms defined on surfaces; this conjecture provides a quantitative threshold on the number of fixed points (possibly counted homologically) which forces the existence of infinitely many periodic points. This is joint work in progress with Marcelo Atallah and Brayan Ferreira.
algebraic geometrydifferential geometrysymplectic geometry
Audience: researchers in the topic
Series comments: To receive the series announcements, which include the
Zoom access password*, please register in
math.tecnico.ulisboa.pt/seminars/geolis/index.php?action=subscribe#subscribe
*the last announcement for a seminar is sent 5 hours before the seminar.
Geometria em Lisboa video channel: educast.fccn.pt/vod/channels/bu46oyq74
| Organizers: | GONCALO OLIVEIRA*, Rosa Sena Dias, Sílvia Anjos* |
| *contact for this listing |
