Numerical approximation of Hamiltonian flows on Poisson manifolds and groupoid multiplication

Alejandro Cabrera (Universidade Federal do Rio de Janeiro)

Tue Jul 15, 14:00-15:00 (5 months ago)

Abstract: The idea is to construct numerical integrator methods for Hamiltonian type of ODE’s which are defined in an ambient Poisson geometry. The goal is to approximate the exact dynamical solutions of this ODE while, at the same time, preserve the Poisson structure to a certain controlled degree. This is a non-trivial and long-range generalization of the notion of symplectic method in which the Poisson geometry is non-degenerate, thus, symplectic. We first outline a first approach to such methods which uses the geometry of so-called approximate symplectic realizations based on recent joint work with D. Martín de Diego and M. Vaquero. Finally, we describe a second approach based on theoretical results coming from Lie-theoretic aspects and which use an underlying groupoid multiplication, based on work in progress with D. Iglesias and J.C. Marrero.

algebraic geometrydifferential geometrysymplectic geometry

Audience: researchers in the topic


Geometria em Lisboa (IST)

Series comments: To receive the series announcements, which include the
Zoom access password*, please register in
math.tecnico.ulisboa.pt/seminars/geolis/index.php?action=subscribe#subscribe
*the last announcement for a seminar is sent 5 hours before the seminar.

Geometria em Lisboa video channel: educast.fccn.pt/vod/channels/bu46oyq74

Organizers: GONCALO OLIVEIRA*, Rosa Sena Dias, Sílvia Anjos*
*contact for this listing

Export talk to