Contact non-squeezing at large scale via generating functions
Sheila Sandon (IRMA-Strasbourg)
Abstract: The symplectic non-squeezing theorem, discovered by Gromov in 1985, has been the first result showing a fundamental difference between symplectic transformations and volume preserving ones. A similar but more subtle phenomenon in contact topology was found by Eliashberg, Kim and Polterovich in 2006, and refined by Fraser in 2016 and Chiu in 2017: in this case non-squeezing depends on the size of the domains, and only appears above a certain quantum scale.
In my talk I will outline the geometric ideas behind a proof of this general contact non-squeezing theorem that uses generating functions, a classical method based on finite dimensional Morse theory. This is a joint work with Maia Fraser and Bingyu Zhang.
algebraic geometrydifferential geometrysymplectic geometry
Audience: researchers in the topic
Series comments: To receive the series announcements, which include the
Zoom access password*, please register in
math.tecnico.ulisboa.pt/seminars/geolis/index.php?action=subscribe#subscribe
*the last announcement for a seminar is sent 5 hours before the seminar.
Geometria em Lisboa video channel: educast.fccn.pt/vod/channels/bu46oyq74
| Organizers: | GONCALO OLIVEIRA*, Rosa Sena Dias, SÃlvia Anjos* |
| *contact for this listing |
