Fano $4$-folds with large Picard number are products of surfaces
Cinzia Casagrande (Università di Torino)
Abstract: Let $X$ be a smooth, complex Fano $4$-fold, and $\rho(X)$ its Picard number. We will discuss the following theorem: if $\rho(X)>12$, then $X$ is a product of del Pezzo surfaces. This implies, in particular, that the maximal Picard number of a Fano $4$-fold is $18$. After an introduction and a discussion of examples, we explain some of the ideas and techniques involved in the proof.
algebraic geometrydifferential geometrysymplectic geometry
Audience: researchers in the topic
Series comments: To receive the series announcements, which include the
Zoom access password*, please register in
math.tecnico.ulisboa.pt/seminars/geolis/index.php?action=subscribe#subscribe
*the last announcement for a seminar is sent 5 hours before the seminar.
Geometria em Lisboa video channel: educast.fccn.pt/vod/channels/bu46oyq74
| Organizers: | GONCALO OLIVEIRA*, Rosa Sena Dias, SÃlvia Anjos* |
| *contact for this listing |
