Topology of the matroid Grassmannian

Jeffrey Giansiracusa (Durham University)

23-Nov-2023, 14:05-15:00 (2 years ago)

Abstract: The matroid Grassmannian is the moduli space of oriented matroids; this is an important combinatorial analogue of the ordinary oriented real Grassmannian. Thirty years ago MacPherson showed us that understanding the homotopy type of this space can have significant implications in manifold topology, such as providing combinatorial formulae for the Pontrjagin classes. In some easy cases, the matroid Grassmannian is homotopy equivalent to the oriented real Grassmannian, but in most cases we have no idea whether or not they are equivalent. This question is known as MacPherson's conjecture. I'll show that one of the important homotopical structures of the oriented Grassmannians has an analogue on the matroid Grassmannian: the direct sum monoidal product (which gives rise to topological K-theory) is E-infinity.

algebraic topologydifferential geometrydynamical systemsgroup theorygeometric topologysymplectic geometry

Audience: researchers in the topic

( paper )


Geometry and topology online

Series comments: You can also find up-to-date information on the seminar homepage - warwick.ac.uk/fac/sci/maths/research/events/seminars/areas/geomtop/

The talks start at 13:30. Talks are typically fifty minutes long, with ten minutes for questions.

Organizers: Saul Schleimer*, Robert Kropholler*
*contact for this listing

Export talk to