The Kaplansky conjectures
Giles Gardam (Münster)
Abstract: Three conjectures on group rings of torsion-free groups are commonly attributed to Kaplansky, namely the unit, zero divisor and idempotent conjectures. For example, the zero divisor conjecture predicts that if $K$ is a field and $G$ is a torsion-free group, then the group ring $K[G]$ has no zero divisors. I will discuss these conjectures and their relationship to other conjectures and properties of groups. I will then explain how modern solvers for Boolean satisfiability can be applied to them, producing the first counterexample to the unit conjecture.
algebraic topologydifferential geometrydynamical systemsgroup theorygeometric topologysymplectic geometry
Audience: researchers in the topic
Series comments: You can also find up-to-date information on the seminar homepage - warwick.ac.uk/fac/sci/maths/research/events/seminars/areas/geomtop/
The talks start at 13:30. Talks are typically fifty minutes long, with ten minutes for questions.
| Organizers: | Saul Schleimer*, Robert Kropholler* |
| *contact for this listing |
