Obstructions to cubulation
Harry Petyt (Oxford)
Abstract: One can get a lot of information about a group by getting it to act geometrically on a \(\mathrm{CAT}(0)\) cube complex. When this is possible there is a standard framework for trying to find the action, known as Sageev's construction. On the other hand, whilst most groups will not admit such actions, there is a real lack of ways to actually rule out the possibility that they exist. In this talk we give a geometric obstruction to the possibility of cubulating groups.
This is joint work with Zach Munro.
algebraic topologydifferential geometrydynamical systemsgroup theorygeometric topologysymplectic geometry
Audience: researchers in the topic
( paper )
Series comments: You can also find up-to-date information on the seminar homepage - warwick.ac.uk/fac/sci/maths/research/events/seminars/areas/geomtop/
The talks start at 13:30. Talks are typically fifty minutes long, with ten minutes for questions.
| Organizers: | Saul Schleimer*, Robert Kropholler* |
| *contact for this listing |
