Morse directions in classical small cancellation groups
Stefanie Zbinden (Heriot-Watt)
Abstract: Morse geodesics are geodesics that capture the hyperbolic-like features of not necessarily hyperbolic spaces. They were studied in order to generalize proofs about hyperbolic groups. However, it quickly became clear that having a Morse geodesic is not enough to exclude various types of pathological behaviours, which makes many genearlizations impossible. Luckily, it turns out that having slightly stronger assumptions on the group, such as having a WPD element or being "Morse-local-to-global" makes certain pathologies impossible. In this talk, we explore how those stronger assumptions relate to each other in the case of small cancellation groups.
algebraic topologydifferential geometrydynamical systemsgroup theorygeometric topologysymplectic geometry
Audience: researchers in the topic
Series comments: You can also find up-to-date information on the seminar homepage - warwick.ac.uk/fac/sci/maths/research/events/seminars/areas/geomtop/
The talks start at 13:30. Talks are typically fifty minutes long, with ten minutes for questions.
| Organizers: | Saul Schleimer*, Robert Kropholler* |
| *contact for this listing |
