On the abominable properties of the Almost Mathieu operator with Liouville frequencies
Mira Shamis (Queen Mary University of London)
Abstract: We show that, for sufficiently well approximable frequencies, several spectral characteristics of the Almost Mathieu operator can be as poor as at all possible in the class of all discrete Schroedinger operators. For example, the modulus of continuity of the integrated density of states may be no better than logarithmic. Other characteristics to be discussed are homogeneity, the Parreau-Widom property, and (for the critical AMO) the Hausdorff content of the spectrum. Based on joint work with A. Avila, Y. Last, and Q. Zhou.
differential geometrydynamical systemsgeometric topologysymplectic geometryspectral theory
Audience: researchers in the topic
Series comments: On the week of the seminar, an announcement with the Zoom link is mailed to the seminar mailing list. To receive these e-mails, please sign up by writing to Lev Buhovsky (http://www.math.tau.ac.il/~levbuh/).
| Organizers: | Michael Bialy, Lev Buhovsky*, Yaron Ostrover, Leonid Polterovich |
| *contact for this listing |
