Anosov representations, Hodge theory, and Lyapunov exponents
Simion Filip (University of Chicago)
Abstract: Discrete subgroups of semisimple Lie groups arise in a variety of contexts, sometimes "in nature" as monodromy groups of families of algebraic manifolds, and other times in relation to geometric structures and associated dynamical systems. I will discuss a class of such discrete subgroups that arise from certain variations of Hodge structure and lead to Anosov representations, thus relating algebraic and dynamical situations. Among many consequences of these relations, I will explain Torelli theorems for certain families of Calabi-Yau manifolds (including the mirror quintic), uniformization results for domains of discontinuity of the associated discrete groups, and also a proof of a conjecture of Eskin, Kontsevich, Moller, and Zorich on Lyapunov exponents. The discrete groups of interest live inside the real linear symplectic group, and the domains of discontinuity are inside Lagrangian Grassmanians and other associated flag manifolds. The necessary context and background will be explained.
differential geometrydynamical systemsgeometric topologysymplectic geometry
Audience: researchers in the topic
Series comments: On the week of the seminar, an announcement with the Zoom link is mailed to the seminar mailing list. To receive these e-mails, please sign up by writing to Lev Buhovsky (http://www.math.tau.ac.il/~levbuh/).
| Organizers: | Michael Bialy, Lev Buhovsky*, Yaron Ostrover, Leonid Polterovich |
| *contact for this listing |
