A Topological Turán Problem

Corrine Yap (Rutgers University)

18-Jan-2021, 14:00-15:00 (4 years ago)

Abstract: The classical Turán problem asks: given a graph H, how many edges can an n-vertex graph have while containing no isomorphic copy of H? By viewing (k+1)-uniform hypergraphs as k-dimensional simplicial complexes, we can ask a topological version of this (first posed by Nati Linial): given a k-dimensional simplicial complex S, how many facets can an n-vertex k-dimensional simplicial complex have while containing no homeomorphic copy of S? Until recently, little was known for k > 2. In this talk, we give an answer for general k, by way of dependent random choice and the combinatorial notion of a trace-bounded hypergraph. Joint work with Jason Long and Bhargav Narayanan.

combinatoricsprobability

Audience: researchers in the topic


Extremal and probabilistic combinatorics webinar

Series comments: We've added a password: concatenate the 6 first prime numbers (hence obtaining an 8-digit password).

Organizers: Jan Hladky*, Diana Piguet, Jan Volec*, Liana Yepremyan
*contact for this listing

Export talk to