The extremal number of surfaces
Andrey Kupavskii (Moscow Institute of Physics and Technology)
Abstract: In 1973, Brown, Erdős and Sós proved that if H is a 3-uniform hypergraph on n vertices which contains no triangulation of the sphere, then H has at most $O(n^{5/2})$ edges, and this bound is the best possible up to a constant factor. Resolving a conjecture of Linial, also reiterated by Keevash, Long, Narayanan, and Scott, we show that the same result holds for triangulations of the torus. Furthermore, we extend our result to every closed orientable surface S. Joint work with Alexandr Polyanskii, István Tomon and Dmitriy Zakharov
combinatoricsprobability
Audience: researchers in the topic
Extremal and probabilistic combinatorics webinar
Series comments: We've added a password: concatenate the 6 first prime numbers (hence obtaining an 8-digit password).
Organizers: | Jan Hladky*, Diana Piguet, Jan Volec*, Liana Yepremyan |
*contact for this listing |