Finiteness for self-dual classes in variations of Hodge structure
Christian Schnell (Stony Brook)
Abstract: I will talk about a new finiteness theorem for variations of Hodge structure. It is a generalization of the Cattani-Deligne-Kaplan theorem from Hodge classes to so-called self-dual (and anti-self-dual) classes. For example, among integral cohomology classes of degree 4, those of type (4,0) + (2,2) + (0,4) are self-dual, and those of type (3,1) + (1,3) are anti-self-dual. The result is suggested by considerations in theoretical physics, and the proof uses o-minimality and the definability of period mappings. This is joint work with Benjamin Bakker, Thomas Grimm, and Jacob Tsimerman.
algebraic geometry
Audience: researchers in the topic
Series comments: https://ed-ac-uk.zoom.us/j/89993982042
Password: a simply-connected two-dimensional variety with trivial canonical bundle (omit the space)
| Organizers: | Arend Bayer, Laure Flapan*, Emanuele Macri*, Laura Pertusi, Evgeny Shinder, Xiaolei Zhao* |
| *contact for this listing |
