Lineup polytopes and applications in quantum physics

Jean-Philippe Labbé (École de Technologie Supérieure Montreal)

28-Oct-2021, 14:15-16:00 (2 years ago)

Abstract: The set of all possible spectra of 1-reduced density operators for systems of N particles on a d-dimensional Hilbert space is a polytope called hypersimplex. If the spectrum of the original density operators is fixed, the set of spectra (ordered decreasingly) of 1-reduced density operators is also a polytope. A theoretical description of this polytope using inequalities was provided by Klyachko in the early 2000’s. Adapting and enhancing tools from discrete geometry and combinatorics (symmetric polytopes, sweep polytopes, and the Gale order), we obtained such necessary inequalities explicitly, that are furthermore valid for arbitrarily large N and d. These may therefore be interpreted as generalizations of Pauli's exclusion principle for fermions. In particular, this approach leads to a new class of polytopes called lineup polytopes.

This is joint work with physicists Julia Liebert, Christian Schilling and mathematicians Eva Philippe, Federico Castillo and Arnau Padrol.

computational geometrydiscrete mathematicscommutative algebracombinatorics

Audience: researchers in the topic


Copenhagen-Jerusalem Combinatorics Seminar

Series comments: There is a mailing list for talk announcements. If you want to receive the announcements, send an e-mail to the organizer to subscribe to the mailing list.

The password for the zoom room is 123456

Organizers: Karim Adiprasito, Arina Voorhaar*
*contact for this listing

Export talk to