Gravitational breathing memory and dual symmetries

Ali Seraj (Brussels U. and Intl. Solvay Inst., Brussels)

01-Jul-2021, 13:30-14:30 (5 years ago)

Abstract: Brans-Dicke theory contains an additional propagating mode which causes homogeneous expansion and contraction of test bodies in transverse directions. This "breathing" mode is associated with novel memory effects in addition to those of general relativity. Standard tensor mode memories are related to a symmetry principle: they are determined by the balance equations corresponding to the BMS symmetries. In this paper, we show that the leading and subleading breathing memory effects are determined by the balance equations associated with the leading and "overleading" asymptotic symmetries of a dual formulation of the scalar field in terms of a two-form gauge field. The memory effect causes a transition in the vacuum of the dual gauge theory. These results highlight the significance of dual charges and the physical role of overleading asymptotic symmetries.

astrophysicsgeneral relativity and quantum cosmologyinstrumentation and detectors

Audience: researchers in the topic


CENTRA Seminar

Series comments: Recordings of the CENTRA seminars are posted at the following URL:

portal.educast.fccn.pt/videos?c=6865

Organizer: Alex Vano-Vinuales*
*contact for this listing

Export talk to