The moduli space of matroids

Oliver Lorscheid (IMPA)

25-Nov-2020, 18:30-20:00 (5 years ago)

Abstract: Matroids are combinatorial gadgets that reflect properties of linear algebra in situations where this latter theory is not available. This analogy prescribes that the moduli space of matroids should be a Grassmannian over a suitable base object, which cannot be a field or a ring; in consequence usual algebraic geometry does not provide a suitable framework. In joint work with Matt Baker, we have used algebraic geometry over the so-called field with one element to construct such moduli spaces. As an application, we streamline various results of matroid theory and find simplified proofs of classical theorems, such as the fact that a matroid is regular if and only if it is binary and orientable.

We will dedicate the first part of this talk to an exposition of matroids. Then we will briefly outline how to construct the moduli space of matroids. In a last part, we will explain with some care why this theory is useful to simplify classical results in matroid theory.

algebraic geometry

Audience: researchers in the topic


Brazilian algebraic geometry seminar

Series comments: Subscribe the seminar mailing list, please send and email to brag-seminar-request@lists.ime.unicamp.br with "subscribe" in the subject line.

Previous talks available at the YouTube channel "Brazilian Algebraic Geometry" www.youtube.com/channel/UCM-pcdNdpWxQFgOg-illE2w

Organizers: Marcos Jardim*, Ethan Cotterill*, Eduardo Esteves, Carolina Araujo, MaurĂ­cio CorrĂȘa*
*contact for this listing

Export talk to