Square root Euler classes and counting sheaves on Calabi-Yau 4-folds

Richard Thomas

11-May-2021, 16:00-17:00 (5 years ago)

Abstract: I will explain a nice characteristic class of SO(2n,C) bundles in both Chow cohomology and K-theory, and how to localise it to the zeros of an isotropic section. This builds on work of Edidin-Graham, Polishchuk-Vaintrob, Anderson and others. This can be used to construct an algebraic virtual cycle (and virtual structure sheaf) on moduli spaces of stable sheaves on Calabi-Yau 4-folds. It recovers the real derived differential geometry virtual cycle of Borisov-Joyce but has nicer properties, like a torus localisation formula. Joint work with Jeongseok Oh (KIAS).

commutative algebraalgebraic geometryalgebraic topologygeometric topologyK-theory and homology

Audience: researchers in the topic


electronic Algebraic K-theory Seminar

Series comments: Description: Research seminar on algebraic K-theory

Organizers: Elden Elmanto*, Benjamin Antieau, Akhil Mathew*, Maria Yakerson
*contact for this listing

Export talk to