On the compactness threshold in the critical Kirchhoff equation
Erisa Hasani (Florida Institute of Technology)
Abstract: We study a class of critical Kirchhoff problems with a general nonlocal term. The main difficulty here is the absence of a closed-form formula for the compactness threshold. First we obtain a variational characterization of this threshold level. Then we prove a series of existence and multiplicity results based on this variational characterization.
analysis of PDEsclassical analysis and ODEsfunctional analysismetric geometry
Audience: researchers in the topic
Series comments: Description: A senior graduate student/postdoc series in harmonic analysis, geometric measure theory, and partial differential equations.
Meetings will be weekly, and usually will occur on Monday, with some exceptions. For each talk, the Zoom link is made available in the website too. Contact Bruno Poggi at poggi008@umn.edu if you would like to subscribe to the seminar mailing list.
| Organizers: | Bruno Poggi*, Ryan Matzke, Jose Luis Luna Garcia* |
| *contact for this listing |
