Quantitative stability for minimizing Yamabe metrics
Robin Neumayer (Northwestern University)
Abstract: The Yamabe problem asks whether, given a closed Riemannian manifold, one can find a conformal metric of constant scalar curvature (CSC). An affirmative answer was given by Schoen in 1984, following contributions from Yamabe, Trudinger, and Aubin, by establishing the existence of a function that minimizes the so-called Yamabe energy functional; the minimizing function corresponds to the conformal factor of the CSC metric.
We address the quantitative stability of minimizing Yamabe metrics. On any closed Riemannian manifold we show—in a quantitative sense—that if a function nearly minimizes the Yamabe energy, then the corresponding conformal metric is close to a CSC metric. Generically, this closeness is controlled quadratically by the Yamabe energy deficit. However, we construct an example demonstrating that this quadratic estimate is false in the general. This is joint work with Max Engelstein and Luca Spolaor.
analysis of PDEsclassical analysis and ODEsfunctional analysismetric geometry
Audience: researchers in the topic
Series comments: Description: A senior graduate student/postdoc series in harmonic analysis, geometric measure theory, and partial differential equations.
Meetings will be weekly, and usually will occur on Monday, with some exceptions. For each talk, the Zoom link is made available in the website too. Contact Bruno Poggi at poggi008@umn.edu if you would like to subscribe to the seminar mailing list.
| Organizers: | Bruno Poggi*, Ryan Matzke, Jose Luis Luna Garcia* |
| *contact for this listing |
