A Higher-Dimensional Sandpile Map
Alex McDonough (Brown University)
26-Oct-2020, 19:00-20:00 (5 years ago)
Abstract: Traditionally, the sandpile group is defined on a graph and the Matrix-Tree Theorem says that this group's size is equal to the number of spanning trees. An extension of the Matrix-Tree Theorem gives a relationship between the sandpile group and bases of a class of orientable arithmetic matroids. I provide a family of combinatorially meaningful maps between these two sets. This generalizes a bijection given by Backman, Baker, and Yuen and extends work by Duval, Klivans, and Martin. I will not assume any background beyond undergraduate linear algebra.
combinatorics
Audience: researchers in the topic
York University Applied Algebra Seminar
| Organizers: | Aram Dermenjian*, Nantel Bergeron |
| *contact for this listing |
Export talk to
