Identifiability in Phylogenetics using Algebraic Matroids

Ben Hollering (North Carolina State University)

09-Apr-2020, 14:00-15:00 (6 years ago)

Abstract: Identifiability is a crucial property for a statistical model since it implies that distributions in the model uniquely determine the parameters that produce them. In phylogenetics, the identifiability of the tree parameter is of particular interest since it means that phylogenetic models can be used to infer evolutionary histories from data. Typical strategies for proving identifiability results require Gröbner basis computations which become untenable as the size of the model grows. In this talk I'll give some background on phylogenetic algebraic geometry and then discuss a new computational strategy for proving the identifiability of discrete parameters in algebraic statistical models that uses algebraic matroids naturally associated to the models. This algorithm allows us to avoid computing Gröbner bases and is also parallelizable.

combinatorics

Audience: researchers in the topic

( paper | slides | video )


Virtual seminar on algebraic matroids and rigidity theory

Series comments: The COVID-19 pandemic is forcing us all to stay home, foregoing conferences and departmental seminars for the next few months. This weekly virtual seminar is an attempt to patch that departmental-seminar-sized void in our lives until it is safe to resume our more traditional forms of professional networking. Since geographic location matters a lot less for a virtual seminar than for an in-person seminar, this virtual seminar will be defined purely by its mathematical theme, algebraic matroids and rigidity theory, and not any particular department nor region.

Organizer: Daniel Irving Bernstein*
Curator: Andrew Sutherland*
*contact for this listing

Export talk to