Euclidean Wormholes in AdS/CFT
Kristan Jensen (Univ. of Victoria)
Abstract: Euclidean wormholes, geometries that smoothly connect multiple asymptotic regions, pose a conundrum in the AdS/CFT correspondence. I will discuss the construction of certain “simple" wormholes in pure Einstein gravity with negative cosmological constant, and in IIB supergravity. These wormholes connect two asymptotic boundaries which have the topology of either a torus or a circle times a sphere. In this setting there are no saddle points which smoothly connect the two boundaries. Our approach is to then take Einstein gravity or supergravity seriously as an effective field theory, in which one sums over metrics, and to attempt to study the off-shell gravity path integral over wormhole metrics. This problem is formally analogous to one in the Higgs phase of 4d gauge theories coupled to matter, where the Higgs vev forbids instanton solutions, and yet the theory receives instanton-like non-perturbative corrections. In that setting it has been known since the 80s that there are “constrained instantons” which are in a precise sense the most important off-shell configurations for non-perturbative effects. Using similar methods, we find the “most important” wormhole geometries, which we then use to write a (formal) semiclassical approximation to the sum over metrics of this sort. I will also discuss the perturbative and non-stability of these geometries, and the tension they pose with the standard AdS/CFT dictionary.
HEP - theory
Audience: researchers in the topic
( video )
Comments: Zoom Meeting ID: 913 2401 0873
USC High Energy Theory Seminars
Series comments: Zoom link and password contained in each seminar announcement.
| Organizer: | Clifford Johnson* |
| *contact for this listing |
