The skein algebra of the 4-punctured sphere from curve counting
Pierrick Bousseau (ETH Zürich)
Abstract: The Kauffman bracket skein algebra is a quantization of the algebra of regular functions on the SL_2 character variety of a topological surface. I will explain how to realize the skein algebra of the 4-punctured sphere as the output of a mirror symmetry construction based on higher genus Gromov-Witten invariants of a log Calabi-Yau cubic surface. This leads to a proof of a previously conjectured positivity property of the bracelets bases of the skein algebras of the 4-punctured sphere and of the 1-punctured torus.
algebraic geometry
Audience: researchers in the discipline
UBC Vancouver Algebraic Geometry Seminar
Series comments: Recordings and slides are available on the seminar webpage:
wiki.math.ubc.ca/mathbook/alggeom-seminar/Main_Page
| Organizers: | Kai Behrend*, Dylan Allegretti*, Ming Zhang* |
| *contact for this listing |
