Why BF theory is not an Atiyah’s TQFT, and how the BV-BFV approach helps
Pavel Mnev (University of Notre Dame)
Abstract: BF theory does not quite fit into (strict) Atiyah’s axioms. The space of states it assigns to a boundary is typically infinite-dimensional (which implies that the partition function of $S^1 \times X$ is infinite). This can be seen (a) as a consequence of noncompactness of the phase space of the theory or (b) as a manifestation of the problem of zero-modes. The BV-BFV formalism is an approach to gauge theories (in particular, topological ones) combining the Atiyah-Segal functorial picture with the idea of Wilson’s effective action. In this talk I will sketch the construction of BF theory in the BV-BFV language and will explain how it assigns meaningful partition functions (satisfying an appropriate gluing property) to all cobordisms.
mathematical physicsalgebraic topologycategory theoryquantum algebra
Audience: researchers in the topic
Topological Quantum Field Theory Club (IST, Lisbon)
Series comments: To receive the series announcements, which include the Zoom access password*, please register in
math.tecnico.ulisboa.pt/seminars/tqft/index.php?action=subscribe#subscribe
*the last announcement for a seminar is sent 2 hours before the seminar.
TQFT Club video channel: educast.fccn.pt/vod/channels/k0rk5qewc?locale=en
| Organizers: | Roger Picken*, Marko Stošić, Jose Mourão*, John Huerta* |
| *contact for this listing |
