On the structure of skein modules
Rhea Palak Bakshi (University of California, Santa Barbara)
Abstract: Skein modules were introduced by Józef H. Przytycki as generalisations of the Jones and HOMFLYPT polynomial link invariants in the 3-sphere to arbitrary 3-manifolds. The Kauffman bracket skein module (KBSM) is the most extensively studied of all. However, computing the KBSM of a 3-manifold is known to be notoriously hard, especially over the ring of Laurent polynomials. With the goal of finding a definite structure of the KBSM over this ring, several conjectures and theorems were stated over the years for KBSMs. We show that some of these conjectures, and even theorems, are not true. In this talk I will briefly discuss a counterexample to Marche’s generalisation of Witten’s conjecture. I will show that a theorem stated by Przytycki in 1999 about the KBSM of the connected sum of two handlebodies does not hold. I will also give the exact structure of the KBSM of the connected sum of two solid tori and show that it is isomorphic to the KBSM of a genus two handlebody modulo some specific handle sliding relations. Moreover, these handle sliding relations can be written in terms of Chebyshev polynomials.
mathematical physicsalgebraic topologycategory theoryquantum algebra
Audience: researchers in the topic
Topological Quantum Field Theory Club (IST, Lisbon)
Series comments: To receive the series announcements, which include the Zoom access password*, please register in
math.tecnico.ulisboa.pt/seminars/tqft/index.php?action=subscribe#subscribe
*the last announcement for a seminar is sent 2 hours before the seminar.
TQFT Club video channel: educast.fccn.pt/vod/channels/k0rk5qewc?locale=en
| Organizers: | Roger Picken*, Marko Stošić, Jose Mourão*, John Huerta* |
| *contact for this listing |
