Traces and higher structures
Christoph Schweigert (University of Hamburg)
Abstract: Quantum topologists are used to thinking about traces in the framework of pivotal tensor categories and thus in a two-dimensional context to which a two-dimensional graphical calculus can be associated. We explain that traces are already naturally defined for twisted endomorphisms of linear categories, i.e. in a one-dimensional context. The endomorphisms are twisted by the Nakayama functor which, for a module category over a monoidal category, is a twisted module functor and hence an inherently three-dimensional object. This naturally leads to a three-dimensional graphical calculus. This calculus also has applications to Turaev–Viro topological field theories with defects.
mathematical physicsalgebraic topologycategory theoryquantum algebra
Audience: researchers in the topic
Topological Quantum Field Theory Club (IST, Lisbon)
Series comments: To receive the series announcements, which include the Zoom access password*, please register in
math.tecnico.ulisboa.pt/seminars/tqft/index.php?action=subscribe#subscribe
*the last announcement for a seminar is sent 2 hours before the seminar.
TQFT Club video channel: educast.fccn.pt/vod/channels/k0rk5qewc?locale=en
| Organizers: | Roger Picken*, Marko Stošić, Jose Mourão*, John Huerta* |
| *contact for this listing |
