Action on Cantor spaces and macroscopic scalar curvature

Roman Sauer (KIT)

08-Feb-2021, 17:00-18:00 (5 years ago)

Abstract: We prove the macroscopic cousins of three conjectures: 1) a conjectural bound of the simplicial volume of a Riemannian manifold in the presence of a lower scalar curvature bound, 2) the conjecture that rationally essential manifolds do not admit metrics of positive scalar curvature, 3) a conjectural bound of $\ell^2$-Betti numbers of aspherical Riemannian manifolds in the presence of a lower scalar curvature bound. The macroscopic cousin is the statement one obtains by replacing a lower scalar curvature bound by an upper bound on the volumes of 1-balls in the universal cover. Group actions on Cantor spaces surprisingly play an important role in the proof. The talk is based on joint work with Sabine Braun.

differential geometrygeometric topologymetric geometry

Audience: researchers in the topic


Topology and geometry: extremal and typical

Series comments: Sign up for the mailing list groups.google.com/g/tget-seminar to receive zoom links.

Organizer: Fedya Manin*
*contact for this listing

Export talk to