Almost-Linear Time Algorithms for Maximum Flow and More

Rasmus Kyng (ETH Zürich)

20-Apr-2022, 17:00-18:00 (4 years ago)

Abstract: We give the first almost-linear time algorithm for computing exact maximum flows and minimum-cost flows on directed graphs. By well-known reductions, this implies almost-linear time algorithms for several problems including bipartite matching, optimal transport, and undirected vertex connectivity.

Our algorithm uses a new Interior Point Method (IPM) that builds the optimal flow as a sequence of an almost-linear number of approximate undirected minimum-ratio cycles, each of which is computed and processed very efficiently using a new dynamic data structure.

Our framework extends to give an almost-linear time algorithm for computing flows that minimize general edge-separable convex functions to high accuracy. This gives the first almost-linear time algorithm for several problems including entropy-regularized optimal transport, matrix scaling, p-norm flows, and Isotonic regression.

Joint work with Li Chen, Yang Liu, Richard Peng, Maximilian Probst Gutenberg, and Sushant Sachdeva.

computational complexitycomputational geometrycryptography and securitydiscrete mathematicsdata structures and algorithmsgame theorymachine learningquantum computing and informationcombinatoricsinformation theoryoptimization and controlprobability

Audience: researchers in the topic

( paper )


TCS+

Series comments: Description: Theoretical Computer Science

People can register to a talk via our webpage sites.google.com/site/plustcs/livetalk , or subscribe to our calendar and mailing list at sites.google.com/site/plustcs/rss-feeds

Organizers: Clément Canonne*, Anindya De, Sumegha Garg, Gautam Kamath, Ilya Razenshteyn, Oded Regev, Tselil Schramm, Thomas Vidick, Erik Waingarten
*contact for this listing

Export talk to