Faster Algorithms for Unit Maximum Flow

Yang Liu (Stanford University)

02-Dec-2020, 18:00-19:00 (5 years ago)

Abstract: The maximum flow problem is one of the most well-studied problems in combinatorial optimization, encompassing a broad range of cut, matching, and scheduling problems. Here we present a recent line of work obtaining provably faster algorithms for solving the maximum flow problem using interior point methods. In particular, we show how to solve the maximum flow problem in m-edge unit capacity graphs in time almost $m^{4/3}$, improving over the breakthrough $m^{10/7}$ time algorithm of Mądry.

This is based on joint work with Aaron Sidford (https://arxiv.org/abs/1910.14276 and arxiv.org/abs/2003.08929).

computational complexitycomputational geometrycryptography and securitydiscrete mathematicsdata structures and algorithmsgame theorymachine learningquantum computing and informationcombinatoricsinformation theoryoptimization and controlprobability

Audience: researchers in the topic


TCS+

Series comments: Description: Theoretical Computer Science

People can register to a talk via our webpage sites.google.com/site/plustcs/livetalk , or subscribe to our calendar and mailing list at sites.google.com/site/plustcs/rss-feeds

Organizers: Clément Canonne*, Anindya De, Sumegha Garg, Gautam Kamath, Ilya Razenshteyn, Oded Regev, Tselil Schramm, Thomas Vidick, Erik Waingarten
*contact for this listing

Export talk to