Flows of vector fields: classical and modern
Camillo De Lellis (IAS, Princeton)
Abstract: Consider a (possibly time-dependent) vector field $v$ on the Euclidean space. The classical Cauchy-Lipschitz (also named Picard-Lindel\"of) Theorem states that, if the vector field $v$ is Lipschitz in space, for every initial datum $x$ there is a unique trajectory $\gamma$ starting at $x$ at time $0$ and solving the ODE $\dot{\gamma} (t) = v (t, \gamma (t))$. The theorem looses its validity as soon as $v$ is slightly less regular. However, if we bundle all trajectories into a global map allowing $x$ to vary, a celebrated theory put forward by DiPerna and Lions in the 80es show that there is a unique such flow under very reasonable conditions and for much less regular vector fields. A long-standing open question is whether this theory is the byproduct of a stronger classical result which ensures the uniqueness of trajectories for {\em almost every} initial datum. I will give a complete answer to the latter question and draw connections with partial differential equations, harmonic analysis, probability theory and Gromov's $h$-principle.
analysis of PDEs
Audience: researchers in the topic
Rio de Janeiro webinar on analysis and partial differential equations
Series comments: Talks are held twice a month; start time and day of the week may vary, according to the speaker time zone. A link to join each webinar will be made available in due time here and at sites.google.com/view/webinarpde/home
| Organizer: | Edgard Pimentel* |
| *contact for this listing |
