Nuclei as Skyrmions

11-Aug-2020, 16:00-17:00 (4 years ago)

Abstract: In standard models of nuclear physics, nuclei are described as point particles with spin and isospin degrees of freedom. The baryon number (the number of protons plus the number of neutrons) is conserved in nuclear interactions - this fact is usually put in “by hand”. In contrast, the Skyrme model describes nuclei as topological solitons. The baryon number is conserved due to a topological invariant of the theory while spin and isospin appear as quantised isometries of the system. This talk is in two parts: first, I will try and convince you that the Skyrme model is a reasonable model of nuclear physics. It reproduces several known phenomena: nuclear clustering, isospin symmetry and rotational bands in energy spectra. I will then show that the Skyrme model is very different than standard nuclear models: the notion of position breaks down, the Deuteron is a torus and novel scatterings can take place. These surprising facts can give new explanations for some nuclear properties. For instance, the existence of a toroidal Skyrmion explains the attractive spin-orbit force in the nucleon-nucleon interaction as shown recently in arXiv:2007.01304. I will explain this phenomena assuming no background knowledge of Skyrmions or nuclear physics.

mathematical physicsgeneral physicsquantum physics

Audience: general audience

( paper )


QM Foundations & Nature of Time seminar

Series comments: Description: Physics foundations discussion seminar

Current access link in th.if.uj.edu.pl/~dudaj/QMFNoT

Organizer: Jarek Duda*
*contact for this listing

Export talk to