The p-adic Borel hyperbolicity of A_g
Xinwen Zhu (Stanford University)
Abstract: A theorem of Borel says that any holomorphic map from a smooth complex algebraic variety to a smooth arithmetic variety is automatically an algebraic map. The key ingredient is to show that any holomorphic map from the punctured disc to the arithmetic variety has no essential singularity. I will discuss some work towards a p-adic analogue of this theorem for Shimura varieties of Hodge type. Joint with Abhishek Oswal and Ananth Shankar.
algebraic geometrynumber theoryrepresentation theory
Audience: researchers in the topic
Comments: Zoom ID: 995 9287 0950
Zoom password: 311062
POINTS - Peking Online International Number Theory Seminar
Series comments: Description: Seminar on number theory and related topics
This seminar series is sponsored by the Beijing International Center of Mathematical Research (BICMR) and the School of Mathematical Sciences of Peking University.
The conference number and password are available on the external website. See also the announcements on bicmr.pku.edu.cn
| Organizers: | Marc Besson*, Yiwen Ding, Wen-Wei LI*, Ruochuan Liu, Zhiyu Tian, Liang Xiao, Enlin Yang, Xinyi Yuan |
| *contact for this listing |
