The local Gross-Prasad conjecture over archimedean local fields

Cheng Chen (University of Minnesota)

01-Jun-2022, 11:30-12:30 (4 years ago)

Abstract: The local Gross-Prasad conjecture is a refinement of the multiplicity one theorem for spherical pairs of Bessel type defined by a pair of special orthogonal groups. The conjecture shows that there is exactly one representation having multiplicity equal to one in each Vogan packet (with generic parameter) and it also depicts this unique representation with an epsilon character. I will introduce some recent progress for the conjecture over \(\mathbb{R}\) and \(\mathbb{C}\), part of the work was joint with Z. Luo. This local conjecture is a necessary ingredient for the global Gross-Prasad conjecture. Besides, the codimension-one case of the conjecture is closely related to the branching problem for special orthogonal groups.

algebraic geometrynumber theoryrepresentation theory

Audience: researchers in the topic

Comments: Zoom ID: 852 3108 0387

Zoom password: 625020


POINTS - Peking Online International Number Theory Seminar

Series comments: Description: Seminar on number theory and related topics

This seminar series is sponsored by the Beijing International Center of Mathematical Research (BICMR) and the School of Mathematical Sciences of Peking University.

The conference number and password are available on the external website. See also the announcements on bicmr.pku.edu.cn

Organizers: Marc Besson*, Yiwen Ding, Wen-Wei LI*, Ruochuan Liu, Zhiyu Tian, Liang Xiao, Enlin Yang, Xinyi Yuan
*contact for this listing

Export talk to