Approximate tensorization of the relative entropy for noncommuting conditional expectations

Ivan Bardet (Univ. Lyon)

09-Jun-2021, 13:00-13:45 (5 years ago)

Abstract: I will present a new generalisation of the strong subadditivity of the entropy to the setting of general conditional expectations onto arbitrary finite-dimensional von Neumann algebras. The latter inequality, which we call approximate tensorization of the relative entropy, can be expressed as a lower bound for the sum of relative entropies between a given density and its respective projections onto two intersecting von Neumann algebras in terms of the relative entropy between the same density and its projection onto an algebra in the intersection, up to multiplicative and additive constants. In particular, our inequality reduces to the so-called quasi-factorization of the entropy for commuting algebras, which is a key step in modern proofs of the logarithmic Sobolev inequality for classical lattice spin systems.

operator algebras

Audience: researchers in the topic


Conference on operator algebras and related topics in Istanbul, 2021

Organizers: Rafaella Carbone, Mohan Ravichandran*, Betul Tanbay, Boguslaw Zegarlinski
*contact for this listing

Export talk to