Logarithmic mean values of multiplicative functions
Akshaa Vatwani (IIT Gandhinagar)
Abstract: A general mean-value theorem for multiplicative functions taking values in the unit disc was given by Wirsing (1967) and Halász (1968). We consider a multiplicative function f belonging to a certain class of arithmetical functions and let F(s) be the associated Dirichlet series. In this setting, we obtain new Halász-type results for the logarithmic mean value of f. More precisely, we give estimates in terms of the size of $|F(1+1/\log x)|$ and show that these estimates are sharp. As a consequence, we obtain a non-trivial zero-free region for partial sums of L-functions belonging to our class. We also report on some recent work showing that this zero free region is optimal. This is joint work with Arindam Roy (UNC Charlotte).
number theory
Audience: researchers in the topic
Series comments: Zoom link for every talk is sent by email a few days before the day the talk is scheduled. Please contact one of the organizers if you wish to receive these emails. Due to security and privacy concerns with Zoom, please include your full name and affiliation if you are not known to the organizers.
| Organizers: | Stephan Baier*, Satadal Ganguly*, Saurabh Kumar Singh |
| *contact for this listing |
